(0) Obligation:

Clauses:

goal(A, B, C) :- ','(s2l(A, D), applast(D, B, C)).
applast(L, X, Last) :- ','(append(L, .(X, []), LX), last(Last, LX)).
last(X, .(X, [])).
last(X, .(H, T)) :- last(X, T).
append([], L, L).
append(.(H, L1), L2, .(H, L3)) :- append(L1, L2, L3).
s2l(s(X), .(Y, Xs)) :- s2l(X, Xs).
s2l(0, []).

Query: goal(g,a,a)

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph ICLP10.

(2) Obligation:

Clauses:

s2lA(s(T24), .(X66, X67)) :- s2lA(T24, X67).
s2lA(0, []).
appendB([], T65, .(T65, [])).
appendB(.(T72, T75), T76, .(T72, X140)) :- appendB(T75, T76, X140).
lastC(T85, .(T85, [])).
lastC(T95, .(T93, T96)) :- lastC(T95, T96).
appendD(X117, T57, T58, .(X117, X118)) :- appendB(T57, T58, X118).
appendE(T122, .(T122, [])).
goalF(s(T16), T10, T11) :- s2lA(T16, X32).
goalF(s(T16), T42, T43) :- ','(s2lA(T16, T41), appendD(X93, T41, T42, X92)).
goalF(s(T16), T42, T46) :- ','(s2lA(T16, T41), ','(appendD(T44, T41, T42, T45), lastC(T46, T45))).
goalF(0, T111, T112) :- appendE(T111, X177).
goalF(0, T111, T116) :- ','(appendE(T111, T115), lastC(T116, T115)).

Query: goalF(g,a,a)

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
goalF_in: (b,f,f)
s2lA_in: (b,f)
appendD_in: (f,b,f,f)
appendB_in: (b,f,f)
lastC_in: (f,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

goalF_in_gaa(s(T16), T10, T11) → U5_gaa(T16, T10, T11, s2lA_in_ga(T16, X32))
s2lA_in_ga(s(T24), .(X66, X67)) → U1_ga(T24, X66, X67, s2lA_in_ga(T24, X67))
s2lA_in_ga(0, []) → s2lA_out_ga(0, [])
U1_ga(T24, X66, X67, s2lA_out_ga(T24, X67)) → s2lA_out_ga(s(T24), .(X66, X67))
U5_gaa(T16, T10, T11, s2lA_out_ga(T16, X32)) → goalF_out_gaa(s(T16), T10, T11)
goalF_in_gaa(s(T16), T42, T43) → U6_gaa(T16, T42, T43, s2lA_in_ga(T16, T41))
U6_gaa(T16, T42, T43, s2lA_out_ga(T16, T41)) → U7_gaa(T16, T42, T43, appendD_in_agaa(X93, T41, T42, X92))
appendD_in_agaa(X117, T57, T58, .(X117, X118)) → U4_agaa(X117, T57, T58, X118, appendB_in_gaa(T57, T58, X118))
appendB_in_gaa([], T65, .(T65, [])) → appendB_out_gaa([], T65, .(T65, []))
appendB_in_gaa(.(T72, T75), T76, .(T72, X140)) → U2_gaa(T72, T75, T76, X140, appendB_in_gaa(T75, T76, X140))
U2_gaa(T72, T75, T76, X140, appendB_out_gaa(T75, T76, X140)) → appendB_out_gaa(.(T72, T75), T76, .(T72, X140))
U4_agaa(X117, T57, T58, X118, appendB_out_gaa(T57, T58, X118)) → appendD_out_agaa(X117, T57, T58, .(X117, X118))
U7_gaa(T16, T42, T43, appendD_out_agaa(X93, T41, T42, X92)) → goalF_out_gaa(s(T16), T42, T43)
goalF_in_gaa(s(T16), T42, T46) → U8_gaa(T16, T42, T46, s2lA_in_ga(T16, T41))
U8_gaa(T16, T42, T46, s2lA_out_ga(T16, T41)) → U9_gaa(T16, T42, T46, appendD_in_agaa(T44, T41, T42, T45))
U9_gaa(T16, T42, T46, appendD_out_agaa(T44, T41, T42, T45)) → U10_gaa(T16, T42, T46, lastC_in_ag(T46, T45))
lastC_in_ag(T85, .(T85, [])) → lastC_out_ag(T85, .(T85, []))
lastC_in_ag(T95, .(T93, T96)) → U3_ag(T95, T93, T96, lastC_in_ag(T95, T96))
U3_ag(T95, T93, T96, lastC_out_ag(T95, T96)) → lastC_out_ag(T95, .(T93, T96))
U10_gaa(T16, T42, T46, lastC_out_ag(T46, T45)) → goalF_out_gaa(s(T16), T42, T46)
goalF_in_gaa(0, T111, T112) → U11_gaa(T111, T112, appendE_in_aa(T111, X177))
appendE_in_aa(T122, .(T122, [])) → appendE_out_aa(T122, .(T122, []))
U11_gaa(T111, T112, appendE_out_aa(T111, X177)) → goalF_out_gaa(0, T111, T112)
goalF_in_gaa(0, T111, T116) → U12_gaa(T111, T116, appendE_in_aa(T111, T115))
U12_gaa(T111, T116, appendE_out_aa(T111, T115)) → U13_gaa(T111, T116, lastC_in_ag(T116, T115))
U13_gaa(T111, T116, lastC_out_ag(T116, T115)) → goalF_out_gaa(0, T111, T116)

The argument filtering Pi contains the following mapping:
goalF_in_gaa(x1, x2, x3)  =  goalF_in_gaa(x1)
s(x1)  =  s(x1)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x1, x4)
s2lA_in_ga(x1, x2)  =  s2lA_in_ga(x1)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
0  =  0
s2lA_out_ga(x1, x2)  =  s2lA_out_ga(x1, x2)
.(x1, x2)  =  .(x2)
goalF_out_gaa(x1, x2, x3)  =  goalF_out_gaa(x1)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x1, x4)
U7_gaa(x1, x2, x3, x4)  =  U7_gaa(x1, x4)
appendD_in_agaa(x1, x2, x3, x4)  =  appendD_in_agaa(x2)
U4_agaa(x1, x2, x3, x4, x5)  =  U4_agaa(x2, x5)
appendB_in_gaa(x1, x2, x3)  =  appendB_in_gaa(x1)
[]  =  []
appendB_out_gaa(x1, x2, x3)  =  appendB_out_gaa(x1, x3)
U2_gaa(x1, x2, x3, x4, x5)  =  U2_gaa(x2, x5)
appendD_out_agaa(x1, x2, x3, x4)  =  appendD_out_agaa(x2, x4)
U8_gaa(x1, x2, x3, x4)  =  U8_gaa(x1, x4)
U9_gaa(x1, x2, x3, x4)  =  U9_gaa(x1, x4)
U10_gaa(x1, x2, x3, x4)  =  U10_gaa(x1, x4)
lastC_in_ag(x1, x2)  =  lastC_in_ag(x2)
lastC_out_ag(x1, x2)  =  lastC_out_ag(x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x3, x4)
U11_gaa(x1, x2, x3)  =  U11_gaa(x3)
appendE_in_aa(x1, x2)  =  appendE_in_aa
appendE_out_aa(x1, x2)  =  appendE_out_aa(x2)
U12_gaa(x1, x2, x3)  =  U12_gaa(x3)
U13_gaa(x1, x2, x3)  =  U13_gaa(x3)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

goalF_in_gaa(s(T16), T10, T11) → U5_gaa(T16, T10, T11, s2lA_in_ga(T16, X32))
s2lA_in_ga(s(T24), .(X66, X67)) → U1_ga(T24, X66, X67, s2lA_in_ga(T24, X67))
s2lA_in_ga(0, []) → s2lA_out_ga(0, [])
U1_ga(T24, X66, X67, s2lA_out_ga(T24, X67)) → s2lA_out_ga(s(T24), .(X66, X67))
U5_gaa(T16, T10, T11, s2lA_out_ga(T16, X32)) → goalF_out_gaa(s(T16), T10, T11)
goalF_in_gaa(s(T16), T42, T43) → U6_gaa(T16, T42, T43, s2lA_in_ga(T16, T41))
U6_gaa(T16, T42, T43, s2lA_out_ga(T16, T41)) → U7_gaa(T16, T42, T43, appendD_in_agaa(X93, T41, T42, X92))
appendD_in_agaa(X117, T57, T58, .(X117, X118)) → U4_agaa(X117, T57, T58, X118, appendB_in_gaa(T57, T58, X118))
appendB_in_gaa([], T65, .(T65, [])) → appendB_out_gaa([], T65, .(T65, []))
appendB_in_gaa(.(T72, T75), T76, .(T72, X140)) → U2_gaa(T72, T75, T76, X140, appendB_in_gaa(T75, T76, X140))
U2_gaa(T72, T75, T76, X140, appendB_out_gaa(T75, T76, X140)) → appendB_out_gaa(.(T72, T75), T76, .(T72, X140))
U4_agaa(X117, T57, T58, X118, appendB_out_gaa(T57, T58, X118)) → appendD_out_agaa(X117, T57, T58, .(X117, X118))
U7_gaa(T16, T42, T43, appendD_out_agaa(X93, T41, T42, X92)) → goalF_out_gaa(s(T16), T42, T43)
goalF_in_gaa(s(T16), T42, T46) → U8_gaa(T16, T42, T46, s2lA_in_ga(T16, T41))
U8_gaa(T16, T42, T46, s2lA_out_ga(T16, T41)) → U9_gaa(T16, T42, T46, appendD_in_agaa(T44, T41, T42, T45))
U9_gaa(T16, T42, T46, appendD_out_agaa(T44, T41, T42, T45)) → U10_gaa(T16, T42, T46, lastC_in_ag(T46, T45))
lastC_in_ag(T85, .(T85, [])) → lastC_out_ag(T85, .(T85, []))
lastC_in_ag(T95, .(T93, T96)) → U3_ag(T95, T93, T96, lastC_in_ag(T95, T96))
U3_ag(T95, T93, T96, lastC_out_ag(T95, T96)) → lastC_out_ag(T95, .(T93, T96))
U10_gaa(T16, T42, T46, lastC_out_ag(T46, T45)) → goalF_out_gaa(s(T16), T42, T46)
goalF_in_gaa(0, T111, T112) → U11_gaa(T111, T112, appendE_in_aa(T111, X177))
appendE_in_aa(T122, .(T122, [])) → appendE_out_aa(T122, .(T122, []))
U11_gaa(T111, T112, appendE_out_aa(T111, X177)) → goalF_out_gaa(0, T111, T112)
goalF_in_gaa(0, T111, T116) → U12_gaa(T111, T116, appendE_in_aa(T111, T115))
U12_gaa(T111, T116, appendE_out_aa(T111, T115)) → U13_gaa(T111, T116, lastC_in_ag(T116, T115))
U13_gaa(T111, T116, lastC_out_ag(T116, T115)) → goalF_out_gaa(0, T111, T116)

The argument filtering Pi contains the following mapping:
goalF_in_gaa(x1, x2, x3)  =  goalF_in_gaa(x1)
s(x1)  =  s(x1)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x1, x4)
s2lA_in_ga(x1, x2)  =  s2lA_in_ga(x1)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
0  =  0
s2lA_out_ga(x1, x2)  =  s2lA_out_ga(x1, x2)
.(x1, x2)  =  .(x2)
goalF_out_gaa(x1, x2, x3)  =  goalF_out_gaa(x1)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x1, x4)
U7_gaa(x1, x2, x3, x4)  =  U7_gaa(x1, x4)
appendD_in_agaa(x1, x2, x3, x4)  =  appendD_in_agaa(x2)
U4_agaa(x1, x2, x3, x4, x5)  =  U4_agaa(x2, x5)
appendB_in_gaa(x1, x2, x3)  =  appendB_in_gaa(x1)
[]  =  []
appendB_out_gaa(x1, x2, x3)  =  appendB_out_gaa(x1, x3)
U2_gaa(x1, x2, x3, x4, x5)  =  U2_gaa(x2, x5)
appendD_out_agaa(x1, x2, x3, x4)  =  appendD_out_agaa(x2, x4)
U8_gaa(x1, x2, x3, x4)  =  U8_gaa(x1, x4)
U9_gaa(x1, x2, x3, x4)  =  U9_gaa(x1, x4)
U10_gaa(x1, x2, x3, x4)  =  U10_gaa(x1, x4)
lastC_in_ag(x1, x2)  =  lastC_in_ag(x2)
lastC_out_ag(x1, x2)  =  lastC_out_ag(x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x3, x4)
U11_gaa(x1, x2, x3)  =  U11_gaa(x3)
appendE_in_aa(x1, x2)  =  appendE_in_aa
appendE_out_aa(x1, x2)  =  appendE_out_aa(x2)
U12_gaa(x1, x2, x3)  =  U12_gaa(x3)
U13_gaa(x1, x2, x3)  =  U13_gaa(x3)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

GOALF_IN_GAA(s(T16), T10, T11) → U5_GAA(T16, T10, T11, s2lA_in_ga(T16, X32))
GOALF_IN_GAA(s(T16), T10, T11) → S2LA_IN_GA(T16, X32)
S2LA_IN_GA(s(T24), .(X66, X67)) → U1_GA(T24, X66, X67, s2lA_in_ga(T24, X67))
S2LA_IN_GA(s(T24), .(X66, X67)) → S2LA_IN_GA(T24, X67)
GOALF_IN_GAA(s(T16), T42, T43) → U6_GAA(T16, T42, T43, s2lA_in_ga(T16, T41))
U6_GAA(T16, T42, T43, s2lA_out_ga(T16, T41)) → U7_GAA(T16, T42, T43, appendD_in_agaa(X93, T41, T42, X92))
U6_GAA(T16, T42, T43, s2lA_out_ga(T16, T41)) → APPENDD_IN_AGAA(X93, T41, T42, X92)
APPENDD_IN_AGAA(X117, T57, T58, .(X117, X118)) → U4_AGAA(X117, T57, T58, X118, appendB_in_gaa(T57, T58, X118))
APPENDD_IN_AGAA(X117, T57, T58, .(X117, X118)) → APPENDB_IN_GAA(T57, T58, X118)
APPENDB_IN_GAA(.(T72, T75), T76, .(T72, X140)) → U2_GAA(T72, T75, T76, X140, appendB_in_gaa(T75, T76, X140))
APPENDB_IN_GAA(.(T72, T75), T76, .(T72, X140)) → APPENDB_IN_GAA(T75, T76, X140)
GOALF_IN_GAA(s(T16), T42, T46) → U8_GAA(T16, T42, T46, s2lA_in_ga(T16, T41))
U8_GAA(T16, T42, T46, s2lA_out_ga(T16, T41)) → U9_GAA(T16, T42, T46, appendD_in_agaa(T44, T41, T42, T45))
U8_GAA(T16, T42, T46, s2lA_out_ga(T16, T41)) → APPENDD_IN_AGAA(T44, T41, T42, T45)
U9_GAA(T16, T42, T46, appendD_out_agaa(T44, T41, T42, T45)) → U10_GAA(T16, T42, T46, lastC_in_ag(T46, T45))
U9_GAA(T16, T42, T46, appendD_out_agaa(T44, T41, T42, T45)) → LASTC_IN_AG(T46, T45)
LASTC_IN_AG(T95, .(T93, T96)) → U3_AG(T95, T93, T96, lastC_in_ag(T95, T96))
LASTC_IN_AG(T95, .(T93, T96)) → LASTC_IN_AG(T95, T96)
GOALF_IN_GAA(0, T111, T112) → U11_GAA(T111, T112, appendE_in_aa(T111, X177))
GOALF_IN_GAA(0, T111, T112) → APPENDE_IN_AA(T111, X177)
GOALF_IN_GAA(0, T111, T116) → U12_GAA(T111, T116, appendE_in_aa(T111, T115))
U12_GAA(T111, T116, appendE_out_aa(T111, T115)) → U13_GAA(T111, T116, lastC_in_ag(T116, T115))
U12_GAA(T111, T116, appendE_out_aa(T111, T115)) → LASTC_IN_AG(T116, T115)

The TRS R consists of the following rules:

goalF_in_gaa(s(T16), T10, T11) → U5_gaa(T16, T10, T11, s2lA_in_ga(T16, X32))
s2lA_in_ga(s(T24), .(X66, X67)) → U1_ga(T24, X66, X67, s2lA_in_ga(T24, X67))
s2lA_in_ga(0, []) → s2lA_out_ga(0, [])
U1_ga(T24, X66, X67, s2lA_out_ga(T24, X67)) → s2lA_out_ga(s(T24), .(X66, X67))
U5_gaa(T16, T10, T11, s2lA_out_ga(T16, X32)) → goalF_out_gaa(s(T16), T10, T11)
goalF_in_gaa(s(T16), T42, T43) → U6_gaa(T16, T42, T43, s2lA_in_ga(T16, T41))
U6_gaa(T16, T42, T43, s2lA_out_ga(T16, T41)) → U7_gaa(T16, T42, T43, appendD_in_agaa(X93, T41, T42, X92))
appendD_in_agaa(X117, T57, T58, .(X117, X118)) → U4_agaa(X117, T57, T58, X118, appendB_in_gaa(T57, T58, X118))
appendB_in_gaa([], T65, .(T65, [])) → appendB_out_gaa([], T65, .(T65, []))
appendB_in_gaa(.(T72, T75), T76, .(T72, X140)) → U2_gaa(T72, T75, T76, X140, appendB_in_gaa(T75, T76, X140))
U2_gaa(T72, T75, T76, X140, appendB_out_gaa(T75, T76, X140)) → appendB_out_gaa(.(T72, T75), T76, .(T72, X140))
U4_agaa(X117, T57, T58, X118, appendB_out_gaa(T57, T58, X118)) → appendD_out_agaa(X117, T57, T58, .(X117, X118))
U7_gaa(T16, T42, T43, appendD_out_agaa(X93, T41, T42, X92)) → goalF_out_gaa(s(T16), T42, T43)
goalF_in_gaa(s(T16), T42, T46) → U8_gaa(T16, T42, T46, s2lA_in_ga(T16, T41))
U8_gaa(T16, T42, T46, s2lA_out_ga(T16, T41)) → U9_gaa(T16, T42, T46, appendD_in_agaa(T44, T41, T42, T45))
U9_gaa(T16, T42, T46, appendD_out_agaa(T44, T41, T42, T45)) → U10_gaa(T16, T42, T46, lastC_in_ag(T46, T45))
lastC_in_ag(T85, .(T85, [])) → lastC_out_ag(T85, .(T85, []))
lastC_in_ag(T95, .(T93, T96)) → U3_ag(T95, T93, T96, lastC_in_ag(T95, T96))
U3_ag(T95, T93, T96, lastC_out_ag(T95, T96)) → lastC_out_ag(T95, .(T93, T96))
U10_gaa(T16, T42, T46, lastC_out_ag(T46, T45)) → goalF_out_gaa(s(T16), T42, T46)
goalF_in_gaa(0, T111, T112) → U11_gaa(T111, T112, appendE_in_aa(T111, X177))
appendE_in_aa(T122, .(T122, [])) → appendE_out_aa(T122, .(T122, []))
U11_gaa(T111, T112, appendE_out_aa(T111, X177)) → goalF_out_gaa(0, T111, T112)
goalF_in_gaa(0, T111, T116) → U12_gaa(T111, T116, appendE_in_aa(T111, T115))
U12_gaa(T111, T116, appendE_out_aa(T111, T115)) → U13_gaa(T111, T116, lastC_in_ag(T116, T115))
U13_gaa(T111, T116, lastC_out_ag(T116, T115)) → goalF_out_gaa(0, T111, T116)

The argument filtering Pi contains the following mapping:
goalF_in_gaa(x1, x2, x3)  =  goalF_in_gaa(x1)
s(x1)  =  s(x1)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x1, x4)
s2lA_in_ga(x1, x2)  =  s2lA_in_ga(x1)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
0  =  0
s2lA_out_ga(x1, x2)  =  s2lA_out_ga(x1, x2)
.(x1, x2)  =  .(x2)
goalF_out_gaa(x1, x2, x3)  =  goalF_out_gaa(x1)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x1, x4)
U7_gaa(x1, x2, x3, x4)  =  U7_gaa(x1, x4)
appendD_in_agaa(x1, x2, x3, x4)  =  appendD_in_agaa(x2)
U4_agaa(x1, x2, x3, x4, x5)  =  U4_agaa(x2, x5)
appendB_in_gaa(x1, x2, x3)  =  appendB_in_gaa(x1)
[]  =  []
appendB_out_gaa(x1, x2, x3)  =  appendB_out_gaa(x1, x3)
U2_gaa(x1, x2, x3, x4, x5)  =  U2_gaa(x2, x5)
appendD_out_agaa(x1, x2, x3, x4)  =  appendD_out_agaa(x2, x4)
U8_gaa(x1, x2, x3, x4)  =  U8_gaa(x1, x4)
U9_gaa(x1, x2, x3, x4)  =  U9_gaa(x1, x4)
U10_gaa(x1, x2, x3, x4)  =  U10_gaa(x1, x4)
lastC_in_ag(x1, x2)  =  lastC_in_ag(x2)
lastC_out_ag(x1, x2)  =  lastC_out_ag(x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x3, x4)
U11_gaa(x1, x2, x3)  =  U11_gaa(x3)
appendE_in_aa(x1, x2)  =  appendE_in_aa
appendE_out_aa(x1, x2)  =  appendE_out_aa(x2)
U12_gaa(x1, x2, x3)  =  U12_gaa(x3)
U13_gaa(x1, x2, x3)  =  U13_gaa(x3)
GOALF_IN_GAA(x1, x2, x3)  =  GOALF_IN_GAA(x1)
U5_GAA(x1, x2, x3, x4)  =  U5_GAA(x1, x4)
S2LA_IN_GA(x1, x2)  =  S2LA_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x4)
U6_GAA(x1, x2, x3, x4)  =  U6_GAA(x1, x4)
U7_GAA(x1, x2, x3, x4)  =  U7_GAA(x1, x4)
APPENDD_IN_AGAA(x1, x2, x3, x4)  =  APPENDD_IN_AGAA(x2)
U4_AGAA(x1, x2, x3, x4, x5)  =  U4_AGAA(x2, x5)
APPENDB_IN_GAA(x1, x2, x3)  =  APPENDB_IN_GAA(x1)
U2_GAA(x1, x2, x3, x4, x5)  =  U2_GAA(x2, x5)
U8_GAA(x1, x2, x3, x4)  =  U8_GAA(x1, x4)
U9_GAA(x1, x2, x3, x4)  =  U9_GAA(x1, x4)
U10_GAA(x1, x2, x3, x4)  =  U10_GAA(x1, x4)
LASTC_IN_AG(x1, x2)  =  LASTC_IN_AG(x2)
U3_AG(x1, x2, x3, x4)  =  U3_AG(x3, x4)
U11_GAA(x1, x2, x3)  =  U11_GAA(x3)
APPENDE_IN_AA(x1, x2)  =  APPENDE_IN_AA
U12_GAA(x1, x2, x3)  =  U12_GAA(x3)
U13_GAA(x1, x2, x3)  =  U13_GAA(x3)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

GOALF_IN_GAA(s(T16), T10, T11) → U5_GAA(T16, T10, T11, s2lA_in_ga(T16, X32))
GOALF_IN_GAA(s(T16), T10, T11) → S2LA_IN_GA(T16, X32)
S2LA_IN_GA(s(T24), .(X66, X67)) → U1_GA(T24, X66, X67, s2lA_in_ga(T24, X67))
S2LA_IN_GA(s(T24), .(X66, X67)) → S2LA_IN_GA(T24, X67)
GOALF_IN_GAA(s(T16), T42, T43) → U6_GAA(T16, T42, T43, s2lA_in_ga(T16, T41))
U6_GAA(T16, T42, T43, s2lA_out_ga(T16, T41)) → U7_GAA(T16, T42, T43, appendD_in_agaa(X93, T41, T42, X92))
U6_GAA(T16, T42, T43, s2lA_out_ga(T16, T41)) → APPENDD_IN_AGAA(X93, T41, T42, X92)
APPENDD_IN_AGAA(X117, T57, T58, .(X117, X118)) → U4_AGAA(X117, T57, T58, X118, appendB_in_gaa(T57, T58, X118))
APPENDD_IN_AGAA(X117, T57, T58, .(X117, X118)) → APPENDB_IN_GAA(T57, T58, X118)
APPENDB_IN_GAA(.(T72, T75), T76, .(T72, X140)) → U2_GAA(T72, T75, T76, X140, appendB_in_gaa(T75, T76, X140))
APPENDB_IN_GAA(.(T72, T75), T76, .(T72, X140)) → APPENDB_IN_GAA(T75, T76, X140)
GOALF_IN_GAA(s(T16), T42, T46) → U8_GAA(T16, T42, T46, s2lA_in_ga(T16, T41))
U8_GAA(T16, T42, T46, s2lA_out_ga(T16, T41)) → U9_GAA(T16, T42, T46, appendD_in_agaa(T44, T41, T42, T45))
U8_GAA(T16, T42, T46, s2lA_out_ga(T16, T41)) → APPENDD_IN_AGAA(T44, T41, T42, T45)
U9_GAA(T16, T42, T46, appendD_out_agaa(T44, T41, T42, T45)) → U10_GAA(T16, T42, T46, lastC_in_ag(T46, T45))
U9_GAA(T16, T42, T46, appendD_out_agaa(T44, T41, T42, T45)) → LASTC_IN_AG(T46, T45)
LASTC_IN_AG(T95, .(T93, T96)) → U3_AG(T95, T93, T96, lastC_in_ag(T95, T96))
LASTC_IN_AG(T95, .(T93, T96)) → LASTC_IN_AG(T95, T96)
GOALF_IN_GAA(0, T111, T112) → U11_GAA(T111, T112, appendE_in_aa(T111, X177))
GOALF_IN_GAA(0, T111, T112) → APPENDE_IN_AA(T111, X177)
GOALF_IN_GAA(0, T111, T116) → U12_GAA(T111, T116, appendE_in_aa(T111, T115))
U12_GAA(T111, T116, appendE_out_aa(T111, T115)) → U13_GAA(T111, T116, lastC_in_ag(T116, T115))
U12_GAA(T111, T116, appendE_out_aa(T111, T115)) → LASTC_IN_AG(T116, T115)

The TRS R consists of the following rules:

goalF_in_gaa(s(T16), T10, T11) → U5_gaa(T16, T10, T11, s2lA_in_ga(T16, X32))
s2lA_in_ga(s(T24), .(X66, X67)) → U1_ga(T24, X66, X67, s2lA_in_ga(T24, X67))
s2lA_in_ga(0, []) → s2lA_out_ga(0, [])
U1_ga(T24, X66, X67, s2lA_out_ga(T24, X67)) → s2lA_out_ga(s(T24), .(X66, X67))
U5_gaa(T16, T10, T11, s2lA_out_ga(T16, X32)) → goalF_out_gaa(s(T16), T10, T11)
goalF_in_gaa(s(T16), T42, T43) → U6_gaa(T16, T42, T43, s2lA_in_ga(T16, T41))
U6_gaa(T16, T42, T43, s2lA_out_ga(T16, T41)) → U7_gaa(T16, T42, T43, appendD_in_agaa(X93, T41, T42, X92))
appendD_in_agaa(X117, T57, T58, .(X117, X118)) → U4_agaa(X117, T57, T58, X118, appendB_in_gaa(T57, T58, X118))
appendB_in_gaa([], T65, .(T65, [])) → appendB_out_gaa([], T65, .(T65, []))
appendB_in_gaa(.(T72, T75), T76, .(T72, X140)) → U2_gaa(T72, T75, T76, X140, appendB_in_gaa(T75, T76, X140))
U2_gaa(T72, T75, T76, X140, appendB_out_gaa(T75, T76, X140)) → appendB_out_gaa(.(T72, T75), T76, .(T72, X140))
U4_agaa(X117, T57, T58, X118, appendB_out_gaa(T57, T58, X118)) → appendD_out_agaa(X117, T57, T58, .(X117, X118))
U7_gaa(T16, T42, T43, appendD_out_agaa(X93, T41, T42, X92)) → goalF_out_gaa(s(T16), T42, T43)
goalF_in_gaa(s(T16), T42, T46) → U8_gaa(T16, T42, T46, s2lA_in_ga(T16, T41))
U8_gaa(T16, T42, T46, s2lA_out_ga(T16, T41)) → U9_gaa(T16, T42, T46, appendD_in_agaa(T44, T41, T42, T45))
U9_gaa(T16, T42, T46, appendD_out_agaa(T44, T41, T42, T45)) → U10_gaa(T16, T42, T46, lastC_in_ag(T46, T45))
lastC_in_ag(T85, .(T85, [])) → lastC_out_ag(T85, .(T85, []))
lastC_in_ag(T95, .(T93, T96)) → U3_ag(T95, T93, T96, lastC_in_ag(T95, T96))
U3_ag(T95, T93, T96, lastC_out_ag(T95, T96)) → lastC_out_ag(T95, .(T93, T96))
U10_gaa(T16, T42, T46, lastC_out_ag(T46, T45)) → goalF_out_gaa(s(T16), T42, T46)
goalF_in_gaa(0, T111, T112) → U11_gaa(T111, T112, appendE_in_aa(T111, X177))
appendE_in_aa(T122, .(T122, [])) → appendE_out_aa(T122, .(T122, []))
U11_gaa(T111, T112, appendE_out_aa(T111, X177)) → goalF_out_gaa(0, T111, T112)
goalF_in_gaa(0, T111, T116) → U12_gaa(T111, T116, appendE_in_aa(T111, T115))
U12_gaa(T111, T116, appendE_out_aa(T111, T115)) → U13_gaa(T111, T116, lastC_in_ag(T116, T115))
U13_gaa(T111, T116, lastC_out_ag(T116, T115)) → goalF_out_gaa(0, T111, T116)

The argument filtering Pi contains the following mapping:
goalF_in_gaa(x1, x2, x3)  =  goalF_in_gaa(x1)
s(x1)  =  s(x1)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x1, x4)
s2lA_in_ga(x1, x2)  =  s2lA_in_ga(x1)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
0  =  0
s2lA_out_ga(x1, x2)  =  s2lA_out_ga(x1, x2)
.(x1, x2)  =  .(x2)
goalF_out_gaa(x1, x2, x3)  =  goalF_out_gaa(x1)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x1, x4)
U7_gaa(x1, x2, x3, x4)  =  U7_gaa(x1, x4)
appendD_in_agaa(x1, x2, x3, x4)  =  appendD_in_agaa(x2)
U4_agaa(x1, x2, x3, x4, x5)  =  U4_agaa(x2, x5)
appendB_in_gaa(x1, x2, x3)  =  appendB_in_gaa(x1)
[]  =  []
appendB_out_gaa(x1, x2, x3)  =  appendB_out_gaa(x1, x3)
U2_gaa(x1, x2, x3, x4, x5)  =  U2_gaa(x2, x5)
appendD_out_agaa(x1, x2, x3, x4)  =  appendD_out_agaa(x2, x4)
U8_gaa(x1, x2, x3, x4)  =  U8_gaa(x1, x4)
U9_gaa(x1, x2, x3, x4)  =  U9_gaa(x1, x4)
U10_gaa(x1, x2, x3, x4)  =  U10_gaa(x1, x4)
lastC_in_ag(x1, x2)  =  lastC_in_ag(x2)
lastC_out_ag(x1, x2)  =  lastC_out_ag(x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x3, x4)
U11_gaa(x1, x2, x3)  =  U11_gaa(x3)
appendE_in_aa(x1, x2)  =  appendE_in_aa
appendE_out_aa(x1, x2)  =  appendE_out_aa(x2)
U12_gaa(x1, x2, x3)  =  U12_gaa(x3)
U13_gaa(x1, x2, x3)  =  U13_gaa(x3)
GOALF_IN_GAA(x1, x2, x3)  =  GOALF_IN_GAA(x1)
U5_GAA(x1, x2, x3, x4)  =  U5_GAA(x1, x4)
S2LA_IN_GA(x1, x2)  =  S2LA_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x4)
U6_GAA(x1, x2, x3, x4)  =  U6_GAA(x1, x4)
U7_GAA(x1, x2, x3, x4)  =  U7_GAA(x1, x4)
APPENDD_IN_AGAA(x1, x2, x3, x4)  =  APPENDD_IN_AGAA(x2)
U4_AGAA(x1, x2, x3, x4, x5)  =  U4_AGAA(x2, x5)
APPENDB_IN_GAA(x1, x2, x3)  =  APPENDB_IN_GAA(x1)
U2_GAA(x1, x2, x3, x4, x5)  =  U2_GAA(x2, x5)
U8_GAA(x1, x2, x3, x4)  =  U8_GAA(x1, x4)
U9_GAA(x1, x2, x3, x4)  =  U9_GAA(x1, x4)
U10_GAA(x1, x2, x3, x4)  =  U10_GAA(x1, x4)
LASTC_IN_AG(x1, x2)  =  LASTC_IN_AG(x2)
U3_AG(x1, x2, x3, x4)  =  U3_AG(x3, x4)
U11_GAA(x1, x2, x3)  =  U11_GAA(x3)
APPENDE_IN_AA(x1, x2)  =  APPENDE_IN_AA
U12_GAA(x1, x2, x3)  =  U12_GAA(x3)
U13_GAA(x1, x2, x3)  =  U13_GAA(x3)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 20 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LASTC_IN_AG(T95, .(T93, T96)) → LASTC_IN_AG(T95, T96)

The TRS R consists of the following rules:

goalF_in_gaa(s(T16), T10, T11) → U5_gaa(T16, T10, T11, s2lA_in_ga(T16, X32))
s2lA_in_ga(s(T24), .(X66, X67)) → U1_ga(T24, X66, X67, s2lA_in_ga(T24, X67))
s2lA_in_ga(0, []) → s2lA_out_ga(0, [])
U1_ga(T24, X66, X67, s2lA_out_ga(T24, X67)) → s2lA_out_ga(s(T24), .(X66, X67))
U5_gaa(T16, T10, T11, s2lA_out_ga(T16, X32)) → goalF_out_gaa(s(T16), T10, T11)
goalF_in_gaa(s(T16), T42, T43) → U6_gaa(T16, T42, T43, s2lA_in_ga(T16, T41))
U6_gaa(T16, T42, T43, s2lA_out_ga(T16, T41)) → U7_gaa(T16, T42, T43, appendD_in_agaa(X93, T41, T42, X92))
appendD_in_agaa(X117, T57, T58, .(X117, X118)) → U4_agaa(X117, T57, T58, X118, appendB_in_gaa(T57, T58, X118))
appendB_in_gaa([], T65, .(T65, [])) → appendB_out_gaa([], T65, .(T65, []))
appendB_in_gaa(.(T72, T75), T76, .(T72, X140)) → U2_gaa(T72, T75, T76, X140, appendB_in_gaa(T75, T76, X140))
U2_gaa(T72, T75, T76, X140, appendB_out_gaa(T75, T76, X140)) → appendB_out_gaa(.(T72, T75), T76, .(T72, X140))
U4_agaa(X117, T57, T58, X118, appendB_out_gaa(T57, T58, X118)) → appendD_out_agaa(X117, T57, T58, .(X117, X118))
U7_gaa(T16, T42, T43, appendD_out_agaa(X93, T41, T42, X92)) → goalF_out_gaa(s(T16), T42, T43)
goalF_in_gaa(s(T16), T42, T46) → U8_gaa(T16, T42, T46, s2lA_in_ga(T16, T41))
U8_gaa(T16, T42, T46, s2lA_out_ga(T16, T41)) → U9_gaa(T16, T42, T46, appendD_in_agaa(T44, T41, T42, T45))
U9_gaa(T16, T42, T46, appendD_out_agaa(T44, T41, T42, T45)) → U10_gaa(T16, T42, T46, lastC_in_ag(T46, T45))
lastC_in_ag(T85, .(T85, [])) → lastC_out_ag(T85, .(T85, []))
lastC_in_ag(T95, .(T93, T96)) → U3_ag(T95, T93, T96, lastC_in_ag(T95, T96))
U3_ag(T95, T93, T96, lastC_out_ag(T95, T96)) → lastC_out_ag(T95, .(T93, T96))
U10_gaa(T16, T42, T46, lastC_out_ag(T46, T45)) → goalF_out_gaa(s(T16), T42, T46)
goalF_in_gaa(0, T111, T112) → U11_gaa(T111, T112, appendE_in_aa(T111, X177))
appendE_in_aa(T122, .(T122, [])) → appendE_out_aa(T122, .(T122, []))
U11_gaa(T111, T112, appendE_out_aa(T111, X177)) → goalF_out_gaa(0, T111, T112)
goalF_in_gaa(0, T111, T116) → U12_gaa(T111, T116, appendE_in_aa(T111, T115))
U12_gaa(T111, T116, appendE_out_aa(T111, T115)) → U13_gaa(T111, T116, lastC_in_ag(T116, T115))
U13_gaa(T111, T116, lastC_out_ag(T116, T115)) → goalF_out_gaa(0, T111, T116)

The argument filtering Pi contains the following mapping:
goalF_in_gaa(x1, x2, x3)  =  goalF_in_gaa(x1)
s(x1)  =  s(x1)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x1, x4)
s2lA_in_ga(x1, x2)  =  s2lA_in_ga(x1)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
0  =  0
s2lA_out_ga(x1, x2)  =  s2lA_out_ga(x1, x2)
.(x1, x2)  =  .(x2)
goalF_out_gaa(x1, x2, x3)  =  goalF_out_gaa(x1)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x1, x4)
U7_gaa(x1, x2, x3, x4)  =  U7_gaa(x1, x4)
appendD_in_agaa(x1, x2, x3, x4)  =  appendD_in_agaa(x2)
U4_agaa(x1, x2, x3, x4, x5)  =  U4_agaa(x2, x5)
appendB_in_gaa(x1, x2, x3)  =  appendB_in_gaa(x1)
[]  =  []
appendB_out_gaa(x1, x2, x3)  =  appendB_out_gaa(x1, x3)
U2_gaa(x1, x2, x3, x4, x5)  =  U2_gaa(x2, x5)
appendD_out_agaa(x1, x2, x3, x4)  =  appendD_out_agaa(x2, x4)
U8_gaa(x1, x2, x3, x4)  =  U8_gaa(x1, x4)
U9_gaa(x1, x2, x3, x4)  =  U9_gaa(x1, x4)
U10_gaa(x1, x2, x3, x4)  =  U10_gaa(x1, x4)
lastC_in_ag(x1, x2)  =  lastC_in_ag(x2)
lastC_out_ag(x1, x2)  =  lastC_out_ag(x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x3, x4)
U11_gaa(x1, x2, x3)  =  U11_gaa(x3)
appendE_in_aa(x1, x2)  =  appendE_in_aa
appendE_out_aa(x1, x2)  =  appendE_out_aa(x2)
U12_gaa(x1, x2, x3)  =  U12_gaa(x3)
U13_gaa(x1, x2, x3)  =  U13_gaa(x3)
LASTC_IN_AG(x1, x2)  =  LASTC_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LASTC_IN_AG(T95, .(T93, T96)) → LASTC_IN_AG(T95, T96)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x2)
LASTC_IN_AG(x1, x2)  =  LASTC_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LASTC_IN_AG(.(T96)) → LASTC_IN_AG(T96)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LASTC_IN_AG(.(T96)) → LASTC_IN_AG(T96)
    The graph contains the following edges 1 > 1

(15) YES

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDB_IN_GAA(.(T72, T75), T76, .(T72, X140)) → APPENDB_IN_GAA(T75, T76, X140)

The TRS R consists of the following rules:

goalF_in_gaa(s(T16), T10, T11) → U5_gaa(T16, T10, T11, s2lA_in_ga(T16, X32))
s2lA_in_ga(s(T24), .(X66, X67)) → U1_ga(T24, X66, X67, s2lA_in_ga(T24, X67))
s2lA_in_ga(0, []) → s2lA_out_ga(0, [])
U1_ga(T24, X66, X67, s2lA_out_ga(T24, X67)) → s2lA_out_ga(s(T24), .(X66, X67))
U5_gaa(T16, T10, T11, s2lA_out_ga(T16, X32)) → goalF_out_gaa(s(T16), T10, T11)
goalF_in_gaa(s(T16), T42, T43) → U6_gaa(T16, T42, T43, s2lA_in_ga(T16, T41))
U6_gaa(T16, T42, T43, s2lA_out_ga(T16, T41)) → U7_gaa(T16, T42, T43, appendD_in_agaa(X93, T41, T42, X92))
appendD_in_agaa(X117, T57, T58, .(X117, X118)) → U4_agaa(X117, T57, T58, X118, appendB_in_gaa(T57, T58, X118))
appendB_in_gaa([], T65, .(T65, [])) → appendB_out_gaa([], T65, .(T65, []))
appendB_in_gaa(.(T72, T75), T76, .(T72, X140)) → U2_gaa(T72, T75, T76, X140, appendB_in_gaa(T75, T76, X140))
U2_gaa(T72, T75, T76, X140, appendB_out_gaa(T75, T76, X140)) → appendB_out_gaa(.(T72, T75), T76, .(T72, X140))
U4_agaa(X117, T57, T58, X118, appendB_out_gaa(T57, T58, X118)) → appendD_out_agaa(X117, T57, T58, .(X117, X118))
U7_gaa(T16, T42, T43, appendD_out_agaa(X93, T41, T42, X92)) → goalF_out_gaa(s(T16), T42, T43)
goalF_in_gaa(s(T16), T42, T46) → U8_gaa(T16, T42, T46, s2lA_in_ga(T16, T41))
U8_gaa(T16, T42, T46, s2lA_out_ga(T16, T41)) → U9_gaa(T16, T42, T46, appendD_in_agaa(T44, T41, T42, T45))
U9_gaa(T16, T42, T46, appendD_out_agaa(T44, T41, T42, T45)) → U10_gaa(T16, T42, T46, lastC_in_ag(T46, T45))
lastC_in_ag(T85, .(T85, [])) → lastC_out_ag(T85, .(T85, []))
lastC_in_ag(T95, .(T93, T96)) → U3_ag(T95, T93, T96, lastC_in_ag(T95, T96))
U3_ag(T95, T93, T96, lastC_out_ag(T95, T96)) → lastC_out_ag(T95, .(T93, T96))
U10_gaa(T16, T42, T46, lastC_out_ag(T46, T45)) → goalF_out_gaa(s(T16), T42, T46)
goalF_in_gaa(0, T111, T112) → U11_gaa(T111, T112, appendE_in_aa(T111, X177))
appendE_in_aa(T122, .(T122, [])) → appendE_out_aa(T122, .(T122, []))
U11_gaa(T111, T112, appendE_out_aa(T111, X177)) → goalF_out_gaa(0, T111, T112)
goalF_in_gaa(0, T111, T116) → U12_gaa(T111, T116, appendE_in_aa(T111, T115))
U12_gaa(T111, T116, appendE_out_aa(T111, T115)) → U13_gaa(T111, T116, lastC_in_ag(T116, T115))
U13_gaa(T111, T116, lastC_out_ag(T116, T115)) → goalF_out_gaa(0, T111, T116)

The argument filtering Pi contains the following mapping:
goalF_in_gaa(x1, x2, x3)  =  goalF_in_gaa(x1)
s(x1)  =  s(x1)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x1, x4)
s2lA_in_ga(x1, x2)  =  s2lA_in_ga(x1)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
0  =  0
s2lA_out_ga(x1, x2)  =  s2lA_out_ga(x1, x2)
.(x1, x2)  =  .(x2)
goalF_out_gaa(x1, x2, x3)  =  goalF_out_gaa(x1)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x1, x4)
U7_gaa(x1, x2, x3, x4)  =  U7_gaa(x1, x4)
appendD_in_agaa(x1, x2, x3, x4)  =  appendD_in_agaa(x2)
U4_agaa(x1, x2, x3, x4, x5)  =  U4_agaa(x2, x5)
appendB_in_gaa(x1, x2, x3)  =  appendB_in_gaa(x1)
[]  =  []
appendB_out_gaa(x1, x2, x3)  =  appendB_out_gaa(x1, x3)
U2_gaa(x1, x2, x3, x4, x5)  =  U2_gaa(x2, x5)
appendD_out_agaa(x1, x2, x3, x4)  =  appendD_out_agaa(x2, x4)
U8_gaa(x1, x2, x3, x4)  =  U8_gaa(x1, x4)
U9_gaa(x1, x2, x3, x4)  =  U9_gaa(x1, x4)
U10_gaa(x1, x2, x3, x4)  =  U10_gaa(x1, x4)
lastC_in_ag(x1, x2)  =  lastC_in_ag(x2)
lastC_out_ag(x1, x2)  =  lastC_out_ag(x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x3, x4)
U11_gaa(x1, x2, x3)  =  U11_gaa(x3)
appendE_in_aa(x1, x2)  =  appendE_in_aa
appendE_out_aa(x1, x2)  =  appendE_out_aa(x2)
U12_gaa(x1, x2, x3)  =  U12_gaa(x3)
U13_gaa(x1, x2, x3)  =  U13_gaa(x3)
APPENDB_IN_GAA(x1, x2, x3)  =  APPENDB_IN_GAA(x1)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDB_IN_GAA(.(T72, T75), T76, .(T72, X140)) → APPENDB_IN_GAA(T75, T76, X140)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x2)
APPENDB_IN_GAA(x1, x2, x3)  =  APPENDB_IN_GAA(x1)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPENDB_IN_GAA(.(T75)) → APPENDB_IN_GAA(T75)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPENDB_IN_GAA(.(T75)) → APPENDB_IN_GAA(T75)
    The graph contains the following edges 1 > 1

(22) YES

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

S2LA_IN_GA(s(T24), .(X66, X67)) → S2LA_IN_GA(T24, X67)

The TRS R consists of the following rules:

goalF_in_gaa(s(T16), T10, T11) → U5_gaa(T16, T10, T11, s2lA_in_ga(T16, X32))
s2lA_in_ga(s(T24), .(X66, X67)) → U1_ga(T24, X66, X67, s2lA_in_ga(T24, X67))
s2lA_in_ga(0, []) → s2lA_out_ga(0, [])
U1_ga(T24, X66, X67, s2lA_out_ga(T24, X67)) → s2lA_out_ga(s(T24), .(X66, X67))
U5_gaa(T16, T10, T11, s2lA_out_ga(T16, X32)) → goalF_out_gaa(s(T16), T10, T11)
goalF_in_gaa(s(T16), T42, T43) → U6_gaa(T16, T42, T43, s2lA_in_ga(T16, T41))
U6_gaa(T16, T42, T43, s2lA_out_ga(T16, T41)) → U7_gaa(T16, T42, T43, appendD_in_agaa(X93, T41, T42, X92))
appendD_in_agaa(X117, T57, T58, .(X117, X118)) → U4_agaa(X117, T57, T58, X118, appendB_in_gaa(T57, T58, X118))
appendB_in_gaa([], T65, .(T65, [])) → appendB_out_gaa([], T65, .(T65, []))
appendB_in_gaa(.(T72, T75), T76, .(T72, X140)) → U2_gaa(T72, T75, T76, X140, appendB_in_gaa(T75, T76, X140))
U2_gaa(T72, T75, T76, X140, appendB_out_gaa(T75, T76, X140)) → appendB_out_gaa(.(T72, T75), T76, .(T72, X140))
U4_agaa(X117, T57, T58, X118, appendB_out_gaa(T57, T58, X118)) → appendD_out_agaa(X117, T57, T58, .(X117, X118))
U7_gaa(T16, T42, T43, appendD_out_agaa(X93, T41, T42, X92)) → goalF_out_gaa(s(T16), T42, T43)
goalF_in_gaa(s(T16), T42, T46) → U8_gaa(T16, T42, T46, s2lA_in_ga(T16, T41))
U8_gaa(T16, T42, T46, s2lA_out_ga(T16, T41)) → U9_gaa(T16, T42, T46, appendD_in_agaa(T44, T41, T42, T45))
U9_gaa(T16, T42, T46, appendD_out_agaa(T44, T41, T42, T45)) → U10_gaa(T16, T42, T46, lastC_in_ag(T46, T45))
lastC_in_ag(T85, .(T85, [])) → lastC_out_ag(T85, .(T85, []))
lastC_in_ag(T95, .(T93, T96)) → U3_ag(T95, T93, T96, lastC_in_ag(T95, T96))
U3_ag(T95, T93, T96, lastC_out_ag(T95, T96)) → lastC_out_ag(T95, .(T93, T96))
U10_gaa(T16, T42, T46, lastC_out_ag(T46, T45)) → goalF_out_gaa(s(T16), T42, T46)
goalF_in_gaa(0, T111, T112) → U11_gaa(T111, T112, appendE_in_aa(T111, X177))
appendE_in_aa(T122, .(T122, [])) → appendE_out_aa(T122, .(T122, []))
U11_gaa(T111, T112, appendE_out_aa(T111, X177)) → goalF_out_gaa(0, T111, T112)
goalF_in_gaa(0, T111, T116) → U12_gaa(T111, T116, appendE_in_aa(T111, T115))
U12_gaa(T111, T116, appendE_out_aa(T111, T115)) → U13_gaa(T111, T116, lastC_in_ag(T116, T115))
U13_gaa(T111, T116, lastC_out_ag(T116, T115)) → goalF_out_gaa(0, T111, T116)

The argument filtering Pi contains the following mapping:
goalF_in_gaa(x1, x2, x3)  =  goalF_in_gaa(x1)
s(x1)  =  s(x1)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x1, x4)
s2lA_in_ga(x1, x2)  =  s2lA_in_ga(x1)
U1_ga(x1, x2, x3, x4)  =  U1_ga(x1, x4)
0  =  0
s2lA_out_ga(x1, x2)  =  s2lA_out_ga(x1, x2)
.(x1, x2)  =  .(x2)
goalF_out_gaa(x1, x2, x3)  =  goalF_out_gaa(x1)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x1, x4)
U7_gaa(x1, x2, x3, x4)  =  U7_gaa(x1, x4)
appendD_in_agaa(x1, x2, x3, x4)  =  appendD_in_agaa(x2)
U4_agaa(x1, x2, x3, x4, x5)  =  U4_agaa(x2, x5)
appendB_in_gaa(x1, x2, x3)  =  appendB_in_gaa(x1)
[]  =  []
appendB_out_gaa(x1, x2, x3)  =  appendB_out_gaa(x1, x3)
U2_gaa(x1, x2, x3, x4, x5)  =  U2_gaa(x2, x5)
appendD_out_agaa(x1, x2, x3, x4)  =  appendD_out_agaa(x2, x4)
U8_gaa(x1, x2, x3, x4)  =  U8_gaa(x1, x4)
U9_gaa(x1, x2, x3, x4)  =  U9_gaa(x1, x4)
U10_gaa(x1, x2, x3, x4)  =  U10_gaa(x1, x4)
lastC_in_ag(x1, x2)  =  lastC_in_ag(x2)
lastC_out_ag(x1, x2)  =  lastC_out_ag(x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x3, x4)
U11_gaa(x1, x2, x3)  =  U11_gaa(x3)
appendE_in_aa(x1, x2)  =  appendE_in_aa
appendE_out_aa(x1, x2)  =  appendE_out_aa(x2)
U12_gaa(x1, x2, x3)  =  U12_gaa(x3)
U13_gaa(x1, x2, x3)  =  U13_gaa(x3)
S2LA_IN_GA(x1, x2)  =  S2LA_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(24) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(25) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

S2LA_IN_GA(s(T24), .(X66, X67)) → S2LA_IN_GA(T24, X67)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
.(x1, x2)  =  .(x2)
S2LA_IN_GA(x1, x2)  =  S2LA_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(26) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S2LA_IN_GA(s(T24)) → S2LA_IN_GA(T24)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(28) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • S2LA_IN_GA(s(T24)) → S2LA_IN_GA(T24)
    The graph contains the following edges 1 > 1

(29) YES